HeNeos blog

Josue H. @ JP Morgan Chase

HeNeos

← Back to all posts

Summatory Functions

May 22, 2023

#tutorial#number-theory

Lucy's Algorithm

Define S(n,pi)S(n, p_{i}) as the sum in a sieve after sieving the prime pip_{i}.

π\pi function

If each number in the sieve contributes its value in the kk-th power if it's prime and 0 otherwise, then the sum in the sieve:

S(n,pi)=S(n,pi1)pik(S(n/pi,pi1)S(p1,pi1))S(n, p_{i}) = S(n, p_{i-1}) - p_{i}^{k}(S(n/p_{i}, p_{i-1}) - S(p-1, p_{i-1}))

It's enough to sieve until n\sqrt{n} to mark all the numbers in the sieve as primes or not, then:

π(n)=S(n,n)=S(n,pi1)(S(n/pi,pi1)S(p1,pi1))Π(n)=S(n,n)=S(n,pi1)pi(S(n/pi,pi1)S(p1,pi1))\pi(n) = S(n, \sqrt{n}) = S(n, p_{i-1}) - (S(n/p_{i}, p_{i-1}) - S(p-1, p_{i-1}))\\ \Pi(n) = S(n, \sqrt{n}) = S(n, p_{i-1}) - p_{i}(S(n/p_{i}, p_{i-1}) - S(p-1, p_{i-1}))

and the base case is 1+inik-1 + \sum_{i\leq n} i^{k}.

Hyperbola method

Let:

(fg)(n)=dnf(n)g(n/d)=ab=nf(a)g(b)(f*g)(n) = \sum_{d\vert n} f(n) g(n/d) = \sum_{ab = n} f(a)g(b)

then:

nx(fg)(n)=nxab=nf(a)g(b)=abxf(a)g(b)=aαbx/af(a)g(b)+bβax/bf(a)g(b)aαbβf(a)g(b)\sum_{n \leq x} (f*g)(n) = \sum_{n \leq x} \sum_{ab = n} f(a)g(b)\\ = \sum_{ab \leq x} f(a)g(b)\\ = \sum_{a \leq \alpha} \sum_{b \leq x/a} f(a)g(b) + \sum_{b \leq \beta} \sum_{a \leq x/b} f(a)g(b) - \sum_{\substack{a \leq \alpha\\ b \leq \beta}} f(a)g(b)

Commonly, α=β=n\alpha = \beta = \sqrt{n} are the efficient values.

φ\varphi and Φ\Phi functions

Using hyperbola method

Let f(n)=φ(n)f(n) = \varphi(n) and g(n)=1g(n) = 1:

i=1ndiφ(d)=anbn/aφ(a)+bnan/bφ(a)anbnφ(a)i=1ni=anφ(a)na+bnan/bφ(a)anφ(a)nT(n)=anφ(a)na+b=2nan/bφ(a)+knφ(k)nanφ(a)\sum_{i=1}^{n} \sum_{d\vert i} \varphi(d) = \sum_{a\leq \sqrt{n}} \sum_{b\leq n/a} \varphi(a) + \sum_{b\leq \sqrt{n}} \sum_{a\leq n/b} \varphi(a) - \sum_{a\leq \sqrt{n}} \sum_{b \leq \sqrt{n}} \varphi(a)\\ \sum_{i=1}^{n} i = \sum_{a\leq \sqrt{n}} \varphi(a) \frac{n}{a} + \sum_{b\leq \sqrt{n}} \sum_{a\leq n/b} \varphi(a) - \sum_{a\leq \sqrt{n}} \varphi(a) \sqrt{n}\\ T(n) = \sum_{a\leq \sqrt{n}} \varphi(a) \frac{n}{a} + \sum_{b=2}^{\sqrt{n}} \sum_{a\leq n/b} \varphi(a) + \sum_{k\leq n} \varphi(k) - \sqrt{n} \sum_{a\leq \sqrt{n}} \varphi(a) knφ(k)=T(n)anφ(a)nab=2nan/bφ(a)+nanφ(a)Φ(n)=T(n)anφ(a)nab=2nΦ(n/b)+nΦ(n)\sum_{k\leq n} \varphi(k) = T(n) - \sum_{a\leq \sqrt{n}} \varphi(a) \frac{n}{a} - \sum_{b=2}^{\sqrt{n}} \sum_{a\leq n/b} \varphi(a) + \sqrt{n} \sum_{a\leq \sqrt{n}} \varphi(a)\\ \Phi(n) = T(n) - \sum_{a\leq \sqrt{n}} \varphi(a) \frac{n}{a} - \sum_{b=2}^{\sqrt{n}} \Phi(n/b) + \sqrt{n} \Phi(\sqrt{n})

μ\mu and M\mathcal{M} functions

Using hyperbola method

Let f(n)=μ(n)f(n) = \mu(n) and g(n)=1g(n) = 1:

i=1ndiμ(d)=anbn/aμ(a)+bnan/bμ(a)anbnμ(a)1=anμ(a)na+bnkn/bμ(k)anμ(a)n=anμ(a)na+knμ(k)+b=2nkn/bμ(k)anμ(a)n\sum_{i=1}^{n} \sum_{d\vert i} \mu(d) = \sum_{a\leq \sqrt{n}} \sum_{b\leq n/a} \mu(a) + \sum_{b\leq \sqrt{n}} \sum_{a\leq n/b} \mu(a) - \sum_{a\leq \sqrt{n}} \sum_{b \leq \sqrt{n}} \mu(a)\\ 1 = \sum_{a\leq \sqrt{n}} \mu(a)\frac{n}{a} + \sum_{b\leq \sqrt{n}} \sum_{k\leq n/b} \mu(k) - \sum_{a\leq \sqrt{n}} \mu(a)\sqrt{n} \\ = \sum_{a\leq \sqrt{n}} \mu(a)\frac{n}{a} + \sum_{k\leq n} \mu(k) + \sum_{b=2}^{\sqrt{n}} \sum_{k\leq n/b} \mu(k) - \sum_{a\leq \sqrt{n}} \mu(a)\sqrt{n} knμ(k)=1anμ(a)nab=2nkn/bμ(k)+anμ(a)nM(n)=1anμ(a)nab=2nM(nb)+nM(n)\sum_{k\leq n} \mu(k) = 1 - \sum_{a\leq \sqrt{n}} \mu(a)\frac{n}{a} - \sum_{b=2}^{\sqrt{n}} \sum_{k\leq n/b} \mu(k) + \sum_{a\leq \sqrt{n}} \mu(a)\sqrt{n}\\ \mathcal{M}(n) = 1 - \sum_{a\leq \sqrt{n}} \mu(a)\frac{n}{a} - \sum_{b=2}^{\sqrt{n}} \mathcal{M}(\frac{n}{b}) + \sqrt{n}\mathcal{M}(\sqrt{n})

Misc.

Statement

i=1Nμ(i)2=i=1Nμ(i)Ni2\sum_{i=1}^{N} \mu(i)^{2} = \sum_{i=1}^{\lfloor\sqrt{N}\rfloor} \mu(i) \bigg\lfloor \frac{N}{i^{2}} \bigg\rfloor

Proof

Let

μ(n)2=k2nμ(k)\mu(n)^{2} = \sum_{k^{2} | n} \mu(k)

then:

i=1Nμ(i)2=i=1Nk2iμ(k)=i=1Nk=1Nk2iμ(k)=k=1Nμ(k)i=1Nk2i=k=1Nμ(k)Nk2\sum_{i=1}^{N} \mu(i)^{2} = \sum_{i=1}^{N} \sum_{k^{2} | i} \mu(k)\\ = \sum_{i=1}^{N} \sum_{k=1}^{N} \Big\vert k^{2} \vert i \Big\vert \mu(k)\\ = \sum_{k=1}^{N} \mu(k) \sum_{i=1}^{N} \Big\vert k^{2} \vert i \Big\vert\\ = \sum_{k=1}^{\sqrt{N}} \mu(k) \bigg\lfloor \frac{N}{k^{2}} \bigg\rfloor

Resources